Mechanotransduction by integrin is essential for IL-6 secretion from endothelial cells in response to uniaxial continuous stretch.

نویسندگان

  • Akitoshi Sasamoto
  • Masato Nagino
  • Satoshi Kobayashi
  • Keiji Naruse
  • Yuji Nimura
  • Masahiro Sokabe
چکیده

We previously reported that uniaxial continuous stretch in human umbilical vein endothelial cells (HUVECs) induced interleukin-6 (IL-6) secretion via IkappaB kinase (IKK)/nuclear factor-kappaB (NF-kappaB) activation. The aim of the present study was to clarify the upstream signaling mechanism responsible for this phenomenon. Stretch-induced IKK activation and IL-6 secretion were inhibited by application of alpha(5)beta(1) integrin-inhibitory peptide (GRGDNP), phosphatidylinositol 3-kinase inhibitor (LY-294002), phospholipase C-gamma inhibitor (U-73122), or protein kinase C inhibitor (H7). Although depletion of intra- or extracellular Ca(2+) pool using thapsigargin (TG) or EGTA, respectively, showed little effect, a TG-EGTA mixture significantly inhibited stretch-induced IKK activation and IL-6 secretion. An increase in the intracellular Ca(2+) concentration ([Ca(2+)](i)) upon continuous stretch was observed even in the presence of TG, EGTA, or GRGDNP, but not in a solution containing the TG-EGTA mixture, indicating that both integrin activation and [Ca(2+)](i) rise are crucial factors for stretch-induced IKK activation and after IL-6 secretion in HUVECs. Furthermore, while PKC activity was inhibited by the TG-EGTA mixture, GRGDNP, LY-294002, or U-73122, PLC-gamma activity was retarded by GRGDNP or LY-294002. These results indicate that continuous stretch-induced IL-6 secretion in HUVECs depends on outside-in signaling via integrins followed by a PI3-K-PLC-gamma-PKC-IKK-NF-kappaB signaling cascade. Another crucial factor, [Ca(2+)](i) increase, may at least be required to activate PKC needed for NF-kappaB activation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global architecture of the F-actin cytoskeleton regulates cell shape-dependent endothelial mechanotransduction.

Uniaxial stretch is an important biophysical regulator of cell morphology (or shape) and functions of vascular endothelial cells (ECs). However, it is unclear whether and how cell shape can independently regulate EC mechanotransductive properties under uniaxial stretch. Herein, utilizing a novel uniaxial cell-stretching device integrated with micropost force sensors, we reported the first exper...

متن کامل

Distinct pathways regulate expression of cardiac electrical and mechanical junction proteins in response to stretch.

To define mechanisms regulating expression of cell-cell junction proteins, we have developed an in vitro system in which neonatal rat ventricular myocytes were subjected to pulsatile stretch. Previously, we showed that expression of the gap junction protein, connexin (Cx) 43, is increased by approximately 2-fold after 1 hour of stretch, and this response is mediated by stretch-induced secretion...

متن کامل

Involvement of SA channels in orienting response of cultured endothelial cells to cyclic stretch.

The present work was designed to elucidate the involvement of Ca2+-permeable stretch-activated (SA) channels in the orienting response of endothelial cells to uniaxial cyclic stretch. Endothelial cells from human umbilical vein were cultured on an elastic silicone membrane and subjected to uniaxial cyclic stretch (120% in length, 1 Hz). The cells started to change their morphology 15 min after ...

متن کامل

Evaluation of CD98 Expression in Normal and Osteoarthritic Human Articular Chondrocytes

Background: Recent studies have provided evidence that integrins play roles in recognition of mechanical stimuli and its translation into a cellular response. Integrin signaling may be regulated by a number of mechanisms including accessory proteins such as CD98 (4F2 antigen). Objectives: To determine CD98 expression by human articular chondrocytes and its involvement in human articular mechano...

متن کامل

Helicobacter pylori Type IV Secretion System and Its Adhesin Subunit, CagL, Mediate Potent Inflammatory Responses in Primary Human Endothelial Cells

The Gram-negative bacterium, Helicobacter pylori, causes chronic gastritis, peptic ulcers, and gastric cancer in humans. Although the gastric epithelium is the primary site of H. pylori colonization, H. pylori can gain access to deeper tissues. Concurring with this notion, H. pylori has been found in the vicinity of endothelial cells in gastric submucosa. Endothelial cells play crucial roles in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 288 5  شماره 

صفحات  -

تاریخ انتشار 2005